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Abstract

Nonideal systems are those in which one takes account of the influence of the oscillatory system on the energy supply
with a limited power (Kononenko, 1969). In this paper, a particular nonideal system is investigated, consisting of a
pendulum whose support point is vibrated along a horizontal guide by a two bar linkage driven by a DC motor,
considered to be a limited power supply. Under these conditions, the oscillations of the pendulum are analyzed through
the variation of a control parameter. The voltage supply of the motor is considered to be a reliable control parameter.
Each simulation starts from zero speed and reaches a steady-state condition when the motor oscillates around a me-
dium speed. Near the fundamental resonance region, the system presents some interesting nonlinear phenomena,
including multi-periodic, quasiperiodic, and chaotic motion. The loss of stability of the system occurs through a saddle-
node bifurcation, where there is a collision of a stable orbit with an unstable one, which is approximately located close
to the value of the pendulum’s angular displacement given by oc = /2. The aims of this study are to better understand
nonideal systems using numerical simulation, to identify the bifurcations that occur in the system, and to report the
existence of a chaotic attractor near the fundamental resonance. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the last two decades, in the field of nonlinear dynamics, there has been an increasing number of
research works through analysis of different mathematical models, and physical experiments. These re-
search works describe the behavior of nonlinear dynamic systems and identify and analyze its bifurcations.
Among the steady-state solutions that may appear in such systems, chaos has received the greatest at-
tention, mainly in the identification of the interesting forms of its strange attractors, a topic dealt with in
mathematical topology. Mechanisms of routes to chaos also are of great interest since they define the way
the system loses stability near a bifurcation point. Among these mechanisms are intermittency, period
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doubling cascade, and quasiperiodicity. Actually, the interest in these phenomena lies in discovering
mechanisms to control the system near the nonlinear resonance region, with the aim of obtaining a desired
behavior inside an unstable domain of the chosen parameters.

However, in majority of these studies, the mathematical modeling is done following the assumption that
the external driving force does not experience any influence from the oscillatory system, and the energy
source works without any internal interference. These systems are called systems with an ideal energy
source, where it is assumed that the force’s amplitude and its frequency are arbitrary constants. But this
simplification may not completely explain all the system properties since due to the mechanical connection
between the energy source and the oscillating system, a dynamic interaction will happen.

A more realistic formulation is to consider an energy source with limited power (nonideal), i.e., to
consider the influence of the oscillatory system on the driving force and vice versa (Nayfeh and Mook,
1979). A distinctive property of a nonideal energy source is that it cannot be described by a certain function
that varies in time because its action also depends on the motion of the oscillatory system. Its motion,
governed by a differential equation, must be included in the dynamic system, and this will increase the
number of degrees of freedom. In the formulation of the rotating shaft mechanism to study the passage
through one of its critical speeds (Suherman and Plaut, 1997), the nonideal supposition can be used. Also, it
can be used in mechanisms where transient motions have a crucial importance in the determination of final
results since this supposition considers the dynamic interactions in the system, and consequently, it in-
creases the quality of the numerical solutions.

In this study, we analyze a particular nonideal, nonlinear dynamic system consisting of a simple pen-
dulum whose support point is vibrated along a horizontal guide by a two bar linkage driven by a DC motor
with limited power (Fig. 1). With this supposition, the pendulum’s support point is vibrated by a periodic
nonharmonic force because it undergoes the action from the motor and the influence of the pendulum’s
oscillation. The simple pendulum is a classical problem in nonlinear dynamics providing a great number of
nonlinear phenomena; we will describe its behavior considering the complex interaction with a limited
energy source.

Kranospol’kaya and Shvets (1990,1993) first investigated this particular system through the analysis of
three nonlinear coupled, averaged equations and referring to this system as “‘electromotor—pendulum”
system. They identified, in their work, two chaotic regions close to fundamental resonance, and the routes
to chaos were intermittency and period doubling cascade.

This paper is organized as follows: Section 2 contains a description of the mathematical model of the
electromotor—pendulum, and Section 3 presents the main numerical results of this system near the fun-
damental resonance region and an analysis of the results.

PENDULUM

Fig. 1. Schematic of the DC motor—pendulum.
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2. Equations of motion

The mechanism consists of a pendulum whose support point A is displaced along a horizontal guide by
a DC motor. When the load motor rotates at an angle 0, the horizontal displacement of pin A is
sa(t) =acosO+b(1 — € sin’6)'?, where « is the length of the crank rod, b is the length of the crank
mechanism and the ratio ¢, = a/b is generally a small parameter.

The kinetic and potential energies are defined as

K =170 + Im[(—alF + lacosa)’ + (—lasina)’], (1)

V = mgl(—cos) (2)
with

F= |1+ ©10050 77 | sino, (3)

(1 — €l sin0)

where 0 is the motor’s speed, « is the pendulum’s angular displacement, J is the mass moment of inertia of
the rotor, m is the pendulum’s mass and / is the length of the pendulum. We use the Lagrangian function,
defined as L = K —V, to obtain the equations of motion for the electromotor—pendulum system.

The motion of the DC motor is governed by the following equations:

Li(t) = V(1) = RI(t) — Kg(2),
Myioror = Krl(t) — e — T,

)

where V/(¢) is the motor voltage, I is the current, R is the electric resistance, L is the armature inductance, Kt
is the torque constant, Kg is the voltage constant, ¢, is the constant for the internal loss coefficient in the
motor and 7; is the constant friction torque in the motor. The first equation is called the electrical equation
of the motor, and the second one defines the torque generated by the motor, Myortor-

We will use a simplified model of a DC motor, where the permanent magnetic field can be derived by
assuming zero armature inductance. Considering also that 7; = 0 and that the electrical time constant of the
motor L/R is smaller than the mechanical time constant RJ/KgKr, the simplified DC motor’s equations
becomes

V(t) =RI(t) + Ke0(),

: (5)
MMOTOR = KTI(I) — cmO.
Then, using the Lagrangian function L, we obtain the system equations,
(J + ma®F?)0 — maF (Icosas — aF 0 — Isinad?) = G, (6)
m(1*5 — alF cosaf — alF cosafl + glsina) = G,, (7

where £ = dF/dt, and Gy, G, are generalized forces given by
Gy = Myioror — Uad®F20 + %ulFo'ccosoc, G, = — .

The constants p,, 1, define, respectively, the viscous damping coefficient at the rolling pin A (in the x di-
rection) and the damping coefficient of the pendulum.

Using the transformation, * = wyt, where ¢* is a dimensionless time and wy is the natural frequency of
the pendulum, the equations of motion of the mechanism can be written as (Belato, 1998)
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(J + BuF?sin’0) 0" = By — (B, + B5F*)0' — Bysin’ oaFF'0' — BsF(cosa + o) sina, (8)

o' + sina = € (FG" + F’G') coso — o, 9)
where

0 . dr KrV(t
F= l—f—Ll/2 sin 0, F'=—, B, =— g)
(1 — €l sin0) dr Roy
is the control parameter,
KeKt | ¢ NS 2 H a
frd _ frg = = l e e
BZ RCUO + o ’ ﬁS o ’ ﬁ4 ma-, ﬂS mat, ﬁ6 Cl)()ml2 ) € / )

and the primes denote derivatives with respect to ¢*.

3. Numerical results

Numerical simulations are done in Matlab™, adopting f;, as a control parameter and f, = 0.02448
kgm?, B, =0, B, =0.00098 kgm?, B5 = 0.0042 kgm?, B, =0.01, ¢, =€ =0.2333, J = 0.001655 kgm?
with the initial conditions «(0) = «/(0) = 0 and 0(0) = 0'(0) = 0. The numerical integrator is the Runge
Kutta fifth-order algorithm with variable time step.

It is known that the dynamics of a system close to the fundamental resonance region may be analyzed
through a frequency-response diagram, which is obtained plotting the amplitude of the oscillating system
versus the frequency of the excitation term. For the electromotor—pendulum, this graph is estimated by
numerical simulation defining the amplitude as the maximum absolute value of the amplitude of the
pendulum’s oscillation (denoted by |onm|), and the frequency as the mean value of the rotational speed of the
motor ¢ (denoted by w).

Fig. 2 represents the resonance curve when the mean frequency w is slowly increased. The results are
similar when the mean frequency  is slowly decreased. The curve was calculated using an increment
AB; = 0.00001 as the variation of the control parameter ;. The transient response is also considered in the
computation because its evolution inside the state space determines the occurrence of the jump pheno-
menon. This dependence on the system’s transient behavior was also observed by McRobie and Thompson
(1992) for the capsize of a craft.
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Fig. 2. Frequency-response diagram: Jump phenomenon observed when the mean frequency w is slowly decreased or increased.
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For the chosen parameter, no change in the curve’s shape, mainly near the jump region when the mean
frequency o is increased or decreased, was observed. In this region, the process occurs the same way in both
cases: there is a transition from a nonresonant to a resonant response (or vice versa) accompanied by a
subsequent decrease in the mean frequency w. This behavior occurs because the chaotic state of the pen-
dulum puts a greater effort on the motor’s operation, consequently, causing a small decrease in its mean
frequency.

The dynamic analysis of this system may be compared with engineering systems that exhibit softening
characteristics, where there is a discontinuous jump from a nonresonant to a resonant solution. However,
in the present case, the resonant solution exhibits a more complicated and different behavior, confirmed by
the presence of “secondary jumps” in the graph. These jumps cause an increase in the amplitude of pen-
dulum’s oscillation, followed by a steady-state synchronized motion (multi-periodic solution). To draw a
comparison between this fact and the ideal systems studied previously, the frequency-resonance diagram
only presents a decreasing smooth curve for the resonant solution; this indicates a diminution of the size of
its basin of attraction. Some works also relate the existence of the synchronized motions in these systems,
but no change in the aspect of their resonant curve was detected.

In a closer analysis of this curve, periodic solutions of the pendulum are observed when the value of the
control parameter is approximately B, ~ 0.02155 kgm? (w ~ 0.87). Under a small increase of the control
parameter’s value, the system loses stability at a saddle-node bifurcation, which is associated with the
“jump” phenomenon. This phenomenon occurs due to the presence of an unstable orbit (saddle) inside the
potential well, which is approximately determined by the value of the pendulum’s angular displacement
oc = n/2. This saddle appears in the system due to the horizontal excitation of the pendulum, and it
separates the interior of the pendulum’s phase portrait into two different regions. This phase portrait is
delimited by the heteroclinic orbits calculated by the unforced and undamped pendulum’s equation.
However, for the nonideal case, not only do the softening characteristic reveals the existence of two steady-
state periodic solutions separated by this unstable orbit, but there is also a variation in the pendulum’s
oscillation in the solutions because when the pendulum loses stability, it is unable to settle on one of these
two states. This phenomenon appears in the electromotor—pendulum system due to the adopted values
[=03m, a=0.07m, b=0.3m, and if these values are diminished (/=0.07m, a=0.03 m, b=
0.2 m), the pendulum manages to escape from the potential well.

Because of the values of the parameter chosen for the pendulum and the nonideal supposition, the
system is not able to escape from the potential well when it loses stability at a saddle-node bifurcation. The
stable attractor collides with the unstable orbit, and the system undergoes a jump to a greater attractor,
located between the unstable orbit and the heteroclinic orbit. However, it does not settle on the greater
periodic attractor, returning instead to the interior of the state space with minimum amplitude. This change
in the pendulum’s behavior reveals the existence of an intermittent limited process. ' When these inter-
mittent stages of greater (bursts) and smaller amplitude become more and more frequent, a chaotic at-
tractor appears in the state space, which is confined inside a single potential well. In Fig. 3a, the chaotic
attractor is given in the three-dimensional Poincare map, which is obtained every time the system’s tra-
jectory crosses 0 = 0, and Fig. 3b represents the projection of the map on the plane o x o.

When the value of the control parameter is increased beyond the chaotic solutions’ domain, there is a
variation among synchronized and nonsynchronized states culminating in a quasiperiodic motion when
B, = 0.03715 kgm? (w ~ 1.515). In this domain of the control parameter, there occurs a small waving in the
amplitude of the resonant response, increasing due to the proximity of the unstable orbit, located near the
values oc = /2. When the mean frequency is increased and the amplitude of the resonant curve diminishes

! Here, intermittent limited process means that the solution does not escape from the potential well determined by the minimum
point (o, o) = (0,0), i.e., it is confined inside this potential well.
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Fig. 3. The single well chaotic attractor obtained for 8, = 0.0217 kgm?: (a) three-dimensional Poincare map and (b) projection of the
map on the plane o' X a.

reaching the unstable orbit, a small jump occurs in the pendulum’s solution when f8; = 0.02842 kgm?
(w ~ 1.149) and again when B, = 0.03278 kgm? (w ~ 1.331). In the first case, the jump is followed by a
synchronized regime given by three periodic solutions, as observed in Fig. 4b; in the second case, a two
periodic solution appears, as observed in Fig. 4d. This diversity of the amplitude is measured by the
proximity of the unstable cycle, where the system searches for a more stable condition of oscillation given
by the synchronization of the response.

In Fig. 4, we observe that the amplitude and the solution at the penultimate jump on the resonant curve,
when f; = 0.02842, is smaller than the last one when f; = 0.03278. This fact occurs because the first one is
closer to the unstable cycle. In this region of the resonance curve, these jumps cause a better arrangement of
the frequency of both systems (the motor and the pendulum), and the system has a tendency to work with
lesser effort. The synchronized solutions concentrate on the approximately vertical parts of the resonant
curve, and the nonsynchronized solutions concentrate on the horizontal ones. In this domain of control
parameter, a diminution of its basin of attraction with the increase of the mean frequency w can be ob-
served.

In this work, we only identified the domains of the control parameter near the fundamental resonance
region where a different system’s behavior must occur when the mean frequency of the motor is increased.
Future studies should be carried out to provide a more complete analysis of the phenomena that appear
along the frequency-response curve and to understand the way the system loses stability when the mean
frequency is decreased.

4. Conclusions

A particular nonideal dynamic system has been analyzed through numerical simulation. An estimation is
given of the critical value of the control parameter for which steady-state chaotic motion can be expected in
the fundamental resonance region. Under nonideal conditions, the chaotic behavior of this system is
characterized by a chaotic transient response that persists for a long time. Also, for some values of the
control parameter, there are no detected differences among the transient and steady-state response. When
the control parameter is increased, there is also a variation among synchronized states. The pendulum’s
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Fig. 4. State space of the pendulum when (a) f, = 0.02841 kgm? (w = 1.15), nonsynchronized state characterized by quasiperiodic
solution; (b) B; = 0.02842 kgm? (w = 1.149), three-periodic solution; (¢) f; = 0.03277 kgm? (w ~ 1.332), nonsynchronized state
characterized by quasiperiodic solution and (d) 8, = 0.03278 kgm? (w ~ 1.331), two-periodic solution. These solutions are obtained
near the two last jump on the resonant curve.

solutions on the resonant curve undergo the interference of an unstable orbit, and when this becomes
greater, there occurs a small jump that causes an increase in the amplitude pendulum’s solution. This is
followed by a steady-state, multi-periodic motion. When the mean frequency of the motor is increased, the
transition to chaos is given by an intermittent phenomenon and the system loses stability through a saddle-
node bifurcation.
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